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BN CHAPTER 1

Structure of Crystals

1.1 Introduction

The physical properties of solid-state materials are determined by three principal
factors:

. The properties of constituent atoms (masses, atomic numbers, electron configu-
rations, ionization energies, etc.)

. The local interactions of atoms with each other in the solid state (i.e., the nature
of the bonding and the resulting nearest-neighbor configurations of atoms)

. The arrangement of atoms in space to form a three-dimensional solid

Many important properties of solids, including their response to electric and magnetic
fields, also involve the correlated motions of electrons and their spins. These prop-
erties include superconductivity and magnetism, among others, and require additional
mformation for their analysis.

The nearest-neighbor (NN) configurations of atoms mentioned above are referred
o here as local atomic bonding units. Their structure determines the short-range order
1SRO) of the solid and the arrangement of the atoms in space constitutes the long-range
order (LRO). If the LRO in the solid is perfect (i.c., if the arrangement in space of
the atoms is perfectly periodic), the solid is said to be a perfect crystal or, simply, a
crystal. Most solid-state materials are actually far from being structurally perfect and
possess deviations from both SRO and LRO. The lack of structural order and its effect
on the properties of the solid are important themes throughout this book.

To illustrate the significance of the three factors listed above, some examples of
solid-state materials whose properties differ due to one or more of these factors are
@iven next. First, consider the two crystalline forms of pure carbon: diamond, an insu-
lator, and graphite, a semimetal. The distinctive physical properties and characteristic
LRO of diamond and graphite differ significantly, due to the differences in SRO present
m the two crystals: tetrahedral (fourfold) local coordination of C atoms for diamond and
mgonal (threefold) local coordination of C atoms for graphite. In contrast, crystals of
metallic Al and insulating Ar share the same types of SRO and LRO but nevertheless,
have very different physical properties, due to the different outer-electron configurations
of Al and Ar atoms. Solids comprised of the same atoms and having different LROs
but essentially the same SRO are the crystalline and amorphous forms of Si and SiOs.

As distinguished from the properties of more disordered forms of solids such as
glasses and other amorphous materials, the properties of crystals depend on both the
Jocal atomic bonding and the fact that in crystals, the local configurations of atoms are
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6 STRUCTURE OF CRYSTALS

arranged periodically in space. These two fundamental aspects of the structure of crys-
tals — short-range local chemical bonding and long-range periodic array of atoms — are
introduced and discussed in this chapter.

The three-dimensional lattice and its unit cell are introduced and defined in a formal
way. Together, they serve as the geometric frame of reference for the discussion of
crystals. The concept of crystal structure and its relationships to the periodic lattice
and to local atomic bonding units are then presented and illustrated using well-known
crystals as examples. The various forms of chemical bonding that occur between the
atoms (or ions) within local atomic bonding units are discussed in Chapter 2 and
examples are given of crystals possessing each type of bonding. A summary of some
important properties and parameters of atoms which influence their behavior in solid-
state materials are also presented in Chapter 2. Additional interesting and important
examples of bonding in solids and the resulting crystal structures are presented in later
chapters, where specific classes of solid-state materials are discussed in more detail.

INTRODUCTION TO LATTICES

A lattice is simply a periodic set of points in space, in principle infinite in extent but
which for our purposes can often be limited to the volume enclosed by the crystal. The
focus here is on three-dimensional lattices. Two-dimensional lattices are important in
discussions of crystal surfaces and are introduced in Chapter 19. A convenient way to
define a lattice is in terms of the set of translation vectors R which can be used to
generate the lattice points.

1.2 Translation Vectors

As a concrete example of a three-dimensional lattice, consider one of the simplest
possible cases, the simple cubic (SC) lattice shown in Fig. 1.1. Starting with an arbitrary
lattice point as the origin (0,0,0) of the coordinate system, all other possible points of
the SC lattice are generated by using the translation vectors R, which originate at
(0,0,0) and terminate at the lattice points (x, y, z) = (n14, n2a, n3a). Here a is the

Figure 1.1. Simple cubic lattice and two unit cells. Note that the vector 2ai is not a primitive
translation vector of this lattice.
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lattice constant, the distance between NN adjacent points of the SC lattice. The values
of ny, ny, and n3 allowed are the set of all integers. In terms of the unit vectors i, j,

and k along the x, y, and z Cartesian axes, the translation vectors R for the SC lattice
can be written as

R=n1a§+n2aj+n3al}. (1.1)

For the simple cubic lattice the three vectors ai, aj, and ak shown in Fig. 1.1 are the
Sfundamental or primitive translation vectors of the lattice since all points of the lattice
can be generated usmg the vectors R defined in Eq. (1.1). These prmntlve translation
vectors i, aj, and ak serve to define the lattice. Note that the vector 2ai shown in
Fig. 1.1 is not a primitive translation vector for the SC lattice since only every other
lattice point along the x-axis can be reached using the vector 2di.

The definition of a lattice is now extended to the most general case, defined by the
translation vectors

R = njal; + nybuy + n3ciis

= njuy + nauy 4 naug, (1.2)

where, in general, a # b # c¢.” The three nonorthogonal unit vectors @1, @i, and i3
are defined as shown in Fig. 1.2, with « # B # y # 90°.* This most general three-
dimensional lattice with primitive translation vectors u; = ail;, u, = b, and uz =
clz, is known as the triclinic lattice.

The property of the lattice that follows from its definition in terms of the translation
vectors R is known as translational symmertry. This is the symmetry that all lattices
possess. As a result of translational symmetry, the lattice appears identical when viewed
from any lattice point. More generally, any two points in a lattice, defined by the vectors
r and r/, are identical (i.e., have identical surroundings), if they can be connected by
a translation vector R (e.g., if ' =1+ R). As a result, in a perfect crystal, all the
properties of the crystal are identical at points r and r’ (except, of course, for those

Figure 1.2. Triclinic lattice and unit cell. This is the general lattice in three dimensions, with

a;ébyécandayéﬂgé){;é90°.

*The notation @ # b # ¢ means that these three lengths are all different from each other (i.e., that a #
b,a #c, and b # ¢).

* The notation « # B # y # 90° means that these three angles are all different from each other (and from
90°).
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points in a finite perfect crystal that lie near its surface). If the lattice also appears the
same from every lattice point after being rotated about a certain axis through an angle
of 360/n degrees, the lattice also has an axis of n-fold rotational symmetry in addition
to its translational symmetry.

The full symmetry of a given crystal structure has importance for the physical
properties of a crystal since it is expected that any macroscopic physical property
has, at the least, the symmetry of the point group of the space group that the crystal
possesses. The 32 possible crystallographic point groups are described in Chapter 135.
For a more complete discussion of these symmetries and of the 230 possible space
groups, see the books by Ashcroft and Mermin (1976), Burns (1985), and Burns and
Glazer (1990), or books on crystallography.

1.3 Unit Cells

The cube of edge length a and volume &’ is the conventional unit cell of the SC
lattice and can be used to generate the entire lattice. This is done by moving (i.e., by
translating) the unit cell through space using the translation vectors R so that the entire
volume occupied by the SC lattice is covered just once.

Lattice points lie at the eight corners of the cubic unit cell, and each lattice point
is shared by the eight unit cells, which touch at their single common corner. When
lattice points lie only at the corners of the unit cell, as for the SC unit cell shown,
the unit cell is then a primitive unit cell. This primitive unit cell, which need not in
general be cubic, is the smallest volume that can be used to generate the lattice. This
definition of a primitive unit cell is not unique since other primitive unit cells can be
defined, including one with a lattice point at its center. This is the Wigner—Seitz cell
described in Chapter 3. Often, a larger unit cell which is not primitive is chosen as the
conventional unit cell for a particular lattice. Examples of and reasons for this use are
given later.

The volume V of a unit cell defined by the three primitive translation vectors uy,
u,, and w3 is given by V = [u; + (uy X u3)| = |ai; « (blly X ciiz)|.

1.4 Bravais Lattices

Bravais in 1845 showed on the basis of symmetry arguments that there exist only 14
distinct lattice types in three dimensions, two of which have already been mentioned:
the simplest, SC, and the most general, triclinic. The 14 Bravais lattices, together with
their conventional unit cells shown in Fig. 1.3, are usually divided into seven systems.
These seven systems are characterized by the special relationships given in Table 1.1,
which involve the lengths of the sides a, b, and ¢ and the angles «, §, and y. These
seven lattice systems are discussed next.

Cubic. There are three cubic Bravais lattices: simple cubic (SC), body-centered cubic
(BCQC), and face-centered cubic (FCC). The BCC lattice is obtained by placing an
additional lattice point at the center of the cubic unit cell; the FCC lattice is obtained
by placing additional lattice points at the centers of the six faces of the cubic unit cell.
The conventional cubic unit cells chosen for these three lattices are shown in Fig. 1.3
and illustrate their essential symmetries, as listed in Table 1.1. The BCC and FCC
lattices, however, have smaller, noncubic primitive unit cells which can also be used
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Cubic Tetragonal

Orthorhombic

P | P P P
Monoclinic Triclinic Hexagonal Trigonal
(Rhombohedral)

Figure 1.3. The 14 Bravais lattices in three dimensions. See Table 1.1 for the relationships
between the sides a, b, and ¢ and between the angles «, 8, and y. P, primitive; I, body-centered;
F, face-centered; C, base-centered.

to generate these lattices. The primitive units cells for BCC and FCC are shown in
Figs. 1.4 and 1.5, respectively. The corresponding primitive translation vectors are also
given. Note that these primitive unit cells for BCC and FCC have lattice points only at
their corners. It can readily be shown that the conventional BCC and FCC cubic unit
cells are two and four times greater in volume, respectively, than the corresponding
primitive unit cells.

The BCC and FCC lattices are quite important since the majority of solid-state
materials have crystal structures based on these two lattices. Also, many elements
crystallize with atoms or ions located at the lattice points of the BCC or FCC lattices.

Tetragonal. There are only two tetragonal Bravais lattices, simple tetragonal (ST)
and body-centered tetragonal (BCT). These correspond to SC and BCC lattices that
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TABLE 1.1 Bravais Lattices: 14 Distinct Lattice Types in Three Dimensions

System

(Essential Number of

Symmetry) Members Lattices Special Relationships

Cubic 3 Simple, a=b=c,a==y=90°
(four three-fold body-centered,
axes) face-centered

Tetragonal 2 Simple, a=b#c,a=p8=y=90°
(one four-fold body-centered
axis)

Orthorhombic 4 Simple, a#b#c,a==y=90
(three orthogonal body-centered,
two-fold axes) face-centered,

base-centered

Monoclinic 2 Simple, a#b#tc,a=B8=90"#y
(one two-fold axis) body-centered

Triclinic 1 Simple a#b#c,a®B#y#£90°
(none)

Trigonal or 1 Simple a=b=c,a=B8=y<120°
rhombohedral and # 90°
(one three-fold axis)

Hexagonal 1 Simple a=b#c,a=8=90°,

(one six-fold axis)

y = 120°

Figure 1.4. Trigonal primitive unit cell and a set of primitive translation vectors uj, Uy, and uz
for the body-centered cubic (BCC) lattice. Also shown is the conventional cubic unit cell. Note
that w, = aGi+j — K)/2 = V3ai, /2, u = a(—i +j +K)/2 = V3ai/2, i = al — j + k)/2
= +/3ali3/2. (After C. Kittel, Introduction to Solid State Physics, Tth ed., copyright 1996 by
John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)

have been either elongated or compressed along one axis, so that, for example, a =
b # ¢ with @ = B = y = 90°. This special axis is often referred to as the c-axis of the
tetragonal lattice. The face-centered tetragonal lattice can be shown to be equivalent
to the BCT lattice and therefore is not a distinct Bravais lattice.

Orthorhombic. There are four orthorhombic Bravais lattices with a # b # ¢ and

o = B =y = 90°: simple, body-centered, face-centered, and base-centered.
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Figure 1.5. Trigonal primitive unit cell and primitive translation vectors uy, u,, and u; for the
face-centered cubic (FCC) lattice. Also shown is the conventional cubic unit cell. Note that
u =a(+k)/2=+2ab;/2,w, = al + Kk)/2 = v2al,/2, w3 = ai + J)/2 = v2aii;/2.

Monoclinic. There are two monoclinic Bravais lattices: simple monoclinic and body-
centered monoclinic. These are ordinarily formed using three primitive translation
vectors of unequal length (a # b # ¢), one of which is perpendicular to the plane
of the other two, with o = 8 = 90° # y.

Triclinic. There is a single triclinic Bravais lattice, witha #Z b #canda #£ B £ y #
90°. This is the Bravais lattice with minimum symmetry. As mentioned earlier, the
triclinic lattice can be considered to be the most general Bravais lattice.

Trigonal (rhombohedral). There is also a single frigonal Bravais lattice, generated
from the SC lattice by stretching one of the body diagonals of the cubic unit cell. The
trigonal lattice therefore has a = b = ¢ and @ = 8 = y < 120°, # 90°. For the special
case with @ = B = y = 60°, the trigonal lattice actually has the same symmetry as the
FCC lattice. As seen in Fig. 1.5, the FCC primitive unit cell is, in fact, a trigonal cell
with angles of 60°.

Hexagonal. The single hexagonal Bravais lattice is simple hexagonal and has a
conventional hexagonal unit cell (Fig. 1.6), which contains three primitive hexagonal
unit cells. The primitive unit cell has a = b # ¢, « = §=90°, and y = 120°. The
hexagonal lattice has a six-fold symmetry axis, whereas the trigonal lattice has only a
three-fold symmetry axis.

Some additional properties of lattices are discussed next. Still others will become

apparent when specific crystal structures based on these lattices are described later in
this chapter.

1.5 Lattice Axes, Planes, and Directions

To be able to discuss effectively the properties of lattices and crystal structures, it is
necessary to provide ways to specify some important geometrical properties of lattices:



STRUCTURE OF CRYSTALS
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\

y=120°

X

Figure 1.6. Primitive unit cell and primitive translation vectors u;, Uy, and us for the hexag-
onal lattice. Also shown is the conventional hexagonal unit cell. u; = all; = ai, w; = ally =
a(cos 120° + sin 120°)) = a(—i + V312, w3 = clis = ck.

the axes of the lattice coordinate system, planes containing lattice points, and directions
in the lattice.

Axes of the Lattice. In the same way that different unit cells can be chosen for a
given lattice, it is also true that different lattice coordinate systems and sets of lattice
axes can be chosen. In general, the axes of a lattice are taken to lie along the edges
of its unit cell. For example, when a conventional cubic unit cell is chosen, the axes
are chosen to be the x, y, and z axes. The understandable convenience of the use of
orthogonal axes makes the choice of the conventional cubic unit cells for the BCC and
FCC lattices quite natural.

Lattice Planes. It is important to have a simple way of specifying or labeling planes
in a lattice since the corresponding planes of atoms in a crystal are important, for
example, in a discussion of diffraction effects. The labeling procedure universally used
for this purpose employs the Miller indices. The specification of the Miller indices for
a set of parallel lattice planes is essentially a two-step process:

1. The three points or intercepts where one of the set of lattice planes in question
intersects the lattice axes are located. This is illustrated in Fig. 1.7 for the case of
a cubic lattice. The plane shown intersects the three orthogonal axes at x = 3a,
y = 2a, and z = 3a. Only the three numerical factors (i.e., 3, 2, 3) are kept.

2. The reciprocals of these three numbers are taken:

111
3,2,3-) 31730 3"

The reciprocals are transformed to the three corresponding smallest integers:

1 3 2
s D y > ,6767_)29352-

The resulting set of integers (2,3,2), or simply (232), are the Miller indices (kkl) of
the lattice plane shown in Fig. 1.7.
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(232) lattice plane

X

Figure 1.7. Miller indices of lattice planes. The intercepts of the lattice plane shown are at
x =3a, y=2a, and z = 3a. The Miller indices (hk{) of this plane are (232), obtained as
described in the text.

z z z
(110) plane
(100) plane P //
/ (111) plane
a
a a y

Y, Y a y
-/ x/
(@) (b) ()

Figure 1.8. Important planes of a cubic lattice. The intercepts for these planes are at (a)
(a, 00, 00) — (hkl) = (100), (b) (a, a, 00) — (hkl) = (110), and (¢) (a, a, a) — (hkl) = (111).

The following important points concerning Miller indices are worth noting:

1. The Miller indices of an arbitrary lattice plane are specified by three integers,
taken in the general case to be A, k, and /. Actually, (hkl) refers not to a single
plane but to the entire set of identical planes in the lattice that are parallel to the
given (hkl) plane. For cubic lattices the perpendicular distance between adjacent
parallel lattice planes is given by d = a/+/h? + k2 + [2.

2. When a lattice plane is parallel to one of the axes of the lattice, the corresponding
intercept is taken to be at infinity. The corresponding Miller index is therefore
zero. Some examples are given in Fig. 1.8.

3. A lattice plane with a negative intercept has a corresponding negative Miller
index. This is indicated with a bar over the index in question [e.g., (R k[)].
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. The notation {#kl} is used when referring to a set of related lattice planes. For
example, the {100} set of planes refers to the six faces of a cube, given by (100),
(010), (001), (100), (010), and (001). Similarly, the eight faces of a regular
octahedron correspond to the {111} set of planes (see Fig. 1.13).

. In general, the important lattice planes in a crystal are those with low Miller
indices [e.g., (100), (110), and (111)], since these are the planes that will have
the highest concentrations of atoms (per unit area).

. Specification of the Miller indices for lattice planes in hexagonal lattices involves
the intercepts of the plane with four axes instead of three. Three of these are the
nonorthogonal axes that lie in the xy-plane, separated from each other by 120°.
These three axes are in the u;, wy, and —(u; + uy) directions shown in Fig. 1.6.
The fourth axis is the ¢ axis (i.e., the usual z-axis), which is orthogonal to the
other three. Once the four intercepts are determined, the procedure for finding
the indices (hkil) proceeds as outlined earlier. The six faces of the conventional
hexagonal unit cell are therefore the (1010), (0110), (1100), (1010), (0110), and
(1100), planes (i.e., the {1100} set of planes). The top and bottom planes of the
unit cell are (0001) planes. Note that the index i corresponds to the —(u; +uz)
direction and is equal to —(k + k).

Directions in the Lattice. The direction from the origin of the lattice to the point
reached by the translation vector R = nyaty + naobly + nsciy is referred to as the
[ny, na, n3] direction or simply [n1n2n3]. The smallest set of integers n1, nz, and n3
corresponding to a given direction are the direction indices for that direction. In cubic
crystals the direction perpendicular to the set of (hkl) planes is the [hkl] direction. For
example, the [100] direction (i.e., the +x axis), is perpendicular to the (100) plane, as
illustrated in Fig. W1.1 at our Web site.” A set of lattice directions related by symmetry

is indicated by (n;nyns3). For example, the lattice axes correspond to the (100) set of
directions. Note that directions in hexagonal lattices are given by [hkil], where, again,
i=—(h+k.

LOCAL ATOMIC BONDING UNITS AND CRYSTAL STRUCTURES

When the same atom or group of atoms is associated with each point of one of the
lattices described earlier, a specific crystal structure results. In this section some impor-
tant examples of the wide variety of existing crystal structures are introduced and
discussed. Additional examples of crystal structures are given in Chapters 11 to 18,
where the following classes of solid-state materials are described: semiconductors,
metals and alloys, ceramics, polymers, dielectrics and ferroelectrics, superconductors,
magnetic materials, and optical materials.

The first questions to ask about any crystal structure deal with what its lattice is and
how the atoms are arranged relative to each lattice point. One approach to answering
such questions is based on the equation

crystal structure = lattice + basis, (1.3)

* Supplementary material for this textbook is included on the Web at the resource site (ftp:/ftp.wiley.com/
public/sci_tech_ med/materials). Cross-references to elements of the Web material are prefixed by “W.”
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which is often used as the operational definition of a crystal structure. Here the term
basis refers to the set of atoms that lie within or are associated with the unit cell
chosen for the structure. Although Eq. (1.3) is technically correct and in fact provides
all the information that is ordinarily needed for most purposes (e.g., for the calculation
of the scattering of waves from a crystal presented in Chapter 3), this approach often
is not particularly helpful in addressing the important question of why the atoms form
a particular crystal structure in the first place. Missing from this approach is any
information about the local bonding between the atoms which determines the structure
and hence the physical properties of the crystal.

To emphasize the role that local bonding plays in determining crystal structure, the
following expression is used to supplement the information provided by Eq. (1.3):

crystal structure = local atomic bonding units + lattice. 1.4)

Here the term local atomic bonding unit refers to one of the smallest groupings or
configurations of atoms, which serves to demonstrate some important aspects of the
bonding in the crystal.

1.6 Local Atomic Bonding Units

Local atomic bonding units consist in general of a central atom (or molecule) and its
NN atoms (or molecules). The central atom can ecither be neutral, as in the rare gas
solid Ar, or can have a net charge, either positive or negative, as in the ionic solid NaCl
(Na*tCl7). The important bonding units in most solid-state materials contain from as
many as 12 NNs to as few as 2 NNs to the central atom. Bonding units with central
atoms that have 12, 8, 6, 4, 3, and 2 identical NNs are described in this section.

The notations A—A, and A-B,, are used to identify local bonding units, with A
indicating the central atom and A,, or B,, the n NN atoms. Here n is the coordination
number (n = CN). The bonding units described here are idealized in the sense that the
NN A or B atoms are all assumed to be the same distance from and bonded with equal
strength to the central A atom. In many crystals, however, the local atomic bonding
units are distorted so that some of the NN atoms are closer than others. Examples of
structures with distorted bonding units are given later. The concept of local atomic
bonding units will be useful even in amorphous or disordered materials where no
lattice or LRO exists. In such materials a type of SRO can still exist if the local atomic
bonding units retain their identity (e.g., the same number of NNs as in the crystal, even
if the bond lengths and bond angles are distorted from their crystalline values).

Important information for the local atomic bonding units described here is summa-
rized in Table 1.2, specifically the number and identity of the NNs, examples of specific
bonding units in real solids, and the coordination polyhedra or regular geometrical
figures which are often used to represent the bonding units. Note that these coordina-
tion polyhedra illustrate the symmetry of the bonding units but are not in general the
unit cells for the structures.

These bonding units are each described below and the distinguishing features of
each are stressed. In general, the central A atom and the NN A and B atoms are
considered to be rigid spheres in contact with each other. Atoms (and ions) are, in
fact, somewhat compressible, so that this model of atoms as rigid spheres will need
to be modified in order to understand many crystal structures. The types of bonding
occurring between the atoms or ions in these units are described in Chapter 2.
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TABLE 1.2 Local Atomic Bonding Units in Solid-State Materials

Coordination Bonding Coordination
Number n Unit Examples Polyhedra
12 A-Aj(cub) Al, Ar, Ceo Cubo-octahedron
A-Ay(hex) Mg Twinned cubo-
octahedron
A—Aqy(icos) Icosahedron
A-Bj,(icos) Sn—Nb;(Nb;Sn) Icosahedron
8 A-Ag Na, Cr, W Cube
A-Bg Cst—Clg™ (CsCh Cube
6 A-Ag Po Octahedron
A—-Bg Nat-Clg (NaCl Octahedron
A-Bg C-Feg (Fe;0) Triangular prism
4 A-Ay C (diamond), Si Tetrahedron
A-By Ga-As, (GaAs) Tetrahedron
Si—04(8i0,) Tetrahedron
Cu-04 (CuO) Square
3 A-A; C (graphite) Triangle or
A-B; B-N; (BN) pyramid
N-Si3 (SizNy)
2 A-A, S, Se Link or
CH, (polyethylene) bridge
A-B; 0-Si; (Si0y)

A-Aqs(cub), A-Aqs(hex), A-Aqaficos), and A-Bja(icos). An atom can be bonded
to the 12 identical NN atoms in an A-A}, bonding unit in at least three distinct ways,
of which the cubic A—Aj,(cub) and hexagonal A—Aj,(hex) cases are referred to as
close-packed units. In close-packed units the packing fraction, defined as the fraction
of space occupied by hard-sphere atoms, has its maximum possible value for identical
atoms of 0.74. The structures of these bonding units are shown in Fig. 1.9, with the
central A atom in both cases first placed in contact with six other A atoms, all lying
in the same plane. Note that pairs of adjacent NN A atoms in the plane are also in
contact with each other.

Six additional A atoms then are placed in contact with the central A atom, with
three in a plane above and three more in a plane below the original plane. This can
be done in two distinct ways, as shown in Fig. 1.9 and c. In Fig. 1.9b the three
atoms in the upper plane lie in depressions adjacent to the central A atom and directly
above the three A atoms in the lower plane. The structure of the resulting A—Aj;
unit is consistent with a hexagonal lattice so the notation A—Ajs(hex) is used. The
coordination polyhedron for the A—Aj,(hex) unit is a twinned cubo-octahedron with
14 sides, 8 being equilateral triangles and 6 being squares. In Fig. 1.9¢ the three atoms
in the upper plane are displaced from those in the lower plane by placing them into the
remaining three depressions adjacent to the central A atom. The notation A—Ajs(cub)
is used for this unit since all the atoms lie on an FCC lattice. In addition, these planes
of atoms coincide with (111) planes of the FCC lattice. The cubo-octahedron shown
in Fig. 1.10 is the coordination polyhedron for the A—A;(cub) unit and corresponds
to a cube with the eight corners cut off. The cubic symmetry of this bonding unit is
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(a) (b) ()

Figure 1.9. Structures of A—A;(hex) and A—Aj;(cub) bonding units. (a) A central A atom is
in contact with six NN A atoms, all in the same plane (viewed from above). () An A-Aj,(hex)
bonding unit is obtained when the three upper A atoms lie directly above the three lower A
atoms, as shown. For clarity, the atoms are not shown in contact with each other. (¢) An
A—Aj>(cub) bonding unit obtained when the three upper A atoms are displaced laterally from
the three lower A atoms, as shown.

Figure 1.10. The cubo-octahedron shown is the coordination polyhedron for the A—A,(cub)
bonding unit. The FCC cubic unit cell is also shown. (After W. B. Pearson, The Crystal Chem-
istry and Physics of Metals and Alloys, copyright 1972 by John Wiley & Sons, Inc. Reprinted
by permission of John Wiley & Sons, Inc.)

evident from this figure, where the atoms are reduced from their normal size and so
are not in contact with each other.

The coordination polyhedron for the A—Aj,(icos) and A—Bj;(icos) icosahedral units
is the regular icosahedron containing a central A atom (Fig. 1.11). Here A (or B) atoms
are located at the 12 vertices of the regular icosahedron, which has 20 triangular faces.
An icosahedron therefore consists of 20 tetrahedra sharing a common vertex and has
a total of six five-fold symmetry axes. For the A—A,(icos) unit shown, the 12 NN A
atoms will not be in contact with each other unless there is some compression at their
points of contact with the central A atom. Bonding units related to these icosahedral
units and which also have coordination polyhedra with triangular faces include those
with a central atom surrounded by 14, 15, or 16 NN atoms (i.e., A-By4, A-Bjs, and
A-Bjig). These are known as CN 14, CN 15, and CN 16 polyhedra, It should be noted
that the set of B atoms in these units can also include some A atoms. These units,
together with A—Aj;(icos) and A—Bja(icos), are found in topologically close packed
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Figure 1.11. The regular icosahedron is the coordination polyhedron for the A—Aj,(icos) and
A—By,(icos) bonding units. (After W. B. Pearson, The Crystal Chemistry and Physics of Metals
and Alloys, copyright 1972 by John Wiley & Sons, Inc. Reprinted by permission of John Wiley

& Sons, Inc.)

phases (e.g., Frank—Kasper and Laves phases). For a discussion of these phases, see
Pearson (1972).

A-Ag and A-Bg. An A atom can be bonded to eight other A atoms or to eight B
atoms in a symmetric way when the central A atom is placed at the body-centered
position of a cube and the eight NN A or B atoms are placed at the corners of the
cube (Fig. 1.12). The cube is therefore the coordination polyhedron for the A-Ag and
A-Bg bonding units. When the B atoms are larger than the A atom, they will come
into contact with each other when the radius of a B atom, rg, is equal to 1.366 times ra,
the radius of an A atom. This establishes the requirement that the radius ratio rg/ra <
1.366 for the central A atom to remain in contact with all eight of its NN B atoms in the
A-Bg unit. This requirement can also be expressed as 75 /rs = 0732 (= /3 = 1). For
ra/rs < 0.732, the A-Bg bonding unit may become unstable, resulting in a possible
transformation to an A—Bg unit. The reasons for this instability in ionic crystals are
presented in Chapter 2, where jonic bonding is discussed.” The radius ratios for several
crystal structures are discussed further in Chapter 2.

Figure 1.12. The A-As bonding unit is shown with the central A atom at the body-centered
position and with the eight NN A atoms at the corners of a cube. The cube is the coordination

polyhedron for these bonding units.

T See Table 2.3 for a summary of the radius ratios for various bonding units and crystal structures.
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Figure 1.13. A—-A¢ and A-B, bonding units. (¢) The central A atom is at the body-centered
position and the six NN A or B atoms are at the face-centered positions of a cube. The regular
octahedron shown is the coordination polyhedron for these bonding units. (b)) An A—Bg unit
in the form of a body-centered triangular or trigonal prism is shown. The central A atom is in
contact with three B atoms in a lower plane and also with three B atoms in an upper plane.

A-Ag and A-Bs. An A atom can be bonded to six other A atoms or to six B atoms
in a symmetric way when the central A atom is placed at the body-centered position
of a cube and the six NN A or B atoms are placed at the six face-centered positions of
the same cube (Fig. 1.13a). When the positions of these six NN atoms are connected
as shown, the resulting regular octahedron with eight identical triangular faces is seen
to be the coordination polyhedron. Using an argument similar to that presented above
for the A—Bg unit, it is required that rg/ry < 2.414 (or that 5 /rg > 0.414 = /2 — 1)
for the A atom to remain in contact with all six NN B atoms in the A—Bg unit.

Another example of an A—Bg bonding unit is the body-centered triangular or trigonal
prism (Fig. 1.13b). This unit consists of a central A atom in contact with three B atoms
in a lower plane and three B atoms in an upper plane.

A-A,; and A-B,. The symmetric bonding of an A atom to four other A atoms or
to four B atoms can be visualized by placing the central A atom at the body-centered
position of a cube and the four NN A or B atoms at four of the eight corners of the cube
in such a way that all four NN atoms are separated from each other by the diagonals
of the cube faces (Fig. 1.14). The coordination polyhedron formed when the positions
of the four NN atoms are connected is the regular tetrahedron with vertex angles of
109.47°. For the central A atom to remain in contact with its four NN B atoms in
an A-By unit, it is required that rg/ra < 4.45 (or ra/rg > 0.225 = /3/2 — 1). This

Figure 1.14. The A-A4 and A-B, bonding units are shown with the central A atom at the
body-centered position and with the four NN A or B atoms at four of the eight corners of a
cube. The regular tetrahedron shown is the coordination polyhedron for these bonding units.



20 STRUCTURE OF CRYSTALS

N

o
(@) (b)

<120°

Figure 1.15. Structures of A—A; and A-B; bonding units. (a) planar triangular structure with
central A atom and three NN A or B atoms lying in the same plane; (b) pyramidal structure
with central A atom lying above the triangular base of three NN A or B atoms.

OO GO
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Figure 1.16. Structures of A—-A, and A—B; bonding units: (a) linear structure with central A
atom and two NN A or B atoms lying in a straight line; (b) nonlinear structure.

stability criterion may have some validity for crystals in which the approximation
of spherical atoms or ions is reasonable. It is of less use in covalent crystals with
the diamond or zincblende crystal structures, where the bonding tends to be directional
and the resulting charge distributions are non spherical. Another type of A—B4 bonding
unit has square-planar symmetry, with the A atom surrounded by four NN B atoms at
the corners of a square.

A-A; and A-Bj. The A-A; and A-B; bonding units can be formed with all the
atoms lying in the same plane (Fig. 1.15a), or with the central A atom removed from
the plane of the other three atoms (Fig. 1.155). In the first case, the central A atom
lies at the center of an equilateral triangle, while in the second case it lies above the
triangular base at the vertex of a pyramidal bonding unit. The condition rg/ra < 6.46
(or ra/rg > 0.155 = \/4/3 — 1) can be shown to apply to the first case.

A-A, and A-B,. A central A atom can be bonded to just two NN A or B atoms in a
linear unit (Fig. 1.16a), or in a unit with a bond angle of less than 180° (Fig. 1.16b).
These bonding units are called linking or bridging units since they can correspond
either to a single link in a long chain of similar units or to a bridging unit connecting
two larger bonding units.

1.7 Crystal Structures

Important crystal structures based on a single type of bonding unit are described next.
Examples of solid-state materials with each crystal structure are also given. The types
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of bonding occurring within local atomic bonding units and in crystals are discussed in
Chapter 2. Other important crystal structures based on more than one type of bonding
unit and some based on the A—Bj; and A-A; bonding units are presented in later
chapters.

As indicated in Eq. (1.4), crystal structures will be defined by specifying how the
local atomic bonding units are placed on a given lattice. The viewpoint taken here is
that the lattice of a given crystal structure simply allows the bonding units to fill space
efficiently, with low strain.

Crystal Structures Based on A-As(hex). The central A atom and the 12 NN
A atoms of the A—Aj,(hex) bonding unit all lie on adjacent points of an hexagonal
Bravais lattice, with the planes of atoms parallel to the (0001) lattice planes (see
Fig. 1.6). The resulting crystal structure (Fig. 1.17a) is known as hexagonal close-
packed (HCP). In the HCP crystal structure it can be seen that every atom is at the
center of an A—Aj,(hex) bonding unit. The hexagonal primitive unit cell for HCP
(Fig. 1.17b) contains a basis of two identical A atoms at the positions (0,0,0) and
(%, % %). The coordinates refer to the primitive translation vectors uy, u,, and us.

The close-packed planes of atoms in the HCP crystal structure are the (0002) planes
of the lattice and are stacked along the ¢ direction in the sequence ABABAB. .. . This
stacking sequence is consistent with the structure of the A—Aj;(hex) unit, where the
central A atom and six of its NN atoms lie in an A plane. The three A atoms above
the A plane and the remaining three A atoms below the A plane lie in B planes.

The ratio ¢/a of the lattice constants for the hexagonal unit cell has the value \/g =

1.633 for the ideal HCP crystal structure when the atoms are taken to be hard spheres
in contact with each other. The actual ¢/a ratio for crystals with HCP crystal structures
can deviate from this ideal value when the atoms are not perfectly spherical, as when

(@) (b)

Figure 1.17. (a) Hexagonal close-packed (HCP) crystal structure based on the A—A;,(hex)
bonding unit; (b) primitive unit cell for HCP with a basis of two A atoms at the positions (0,0,0)
and (%,%,% , Where the coordinates refer to the u;, u,, and u; axes, as shown. (After C. Kittel,
Introduction to Solid State Physics, Tth ed., copyright 1995 by John Wiley & Sons, Inc. Reprinted
by permission of John Wiley & Sons, Inc.)
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TABLE 1.3 Elemental Crystals with the HCP Crystal Structure

Element a (nm)* c/a Element a (nm)”® c/a

Be 0.229 1.568 Mg 0.321 1.624
Ti 0.295 1.587 Co 0.251 1.623
Zn 0.267 1.856 Zr 0.323 1.593
T1 0.346 1.598 Gd 0.363 1.591
Ho 0.358 1.570

4] attice constants are values at room temperature.

bonding between atoms in the solid state involves nonspherical electron orbitals. Some
examples of elemental crystals with the HCP crystal structure are given in Table 1.3,
along with the lattice constants a and ¢/a ratios observed at room temperature (as is
the case for all the lattice constants given in tables in this chapter). Information on
the structures and lattice constants of crystals of the elements is given in Table 1.4.
Metallic bonding tends to dominate in elemental crystals that have the HCP crystal
structure, with the result that the A atoms are actually positively charged ions (cations).
An exception is the inert-gas solid He, where van der Waals bonding occurs between
neutral He atoms.

As mentioned earlier, the packing fraction for the A—Aj,(hex) bonding unit and
therefore for the ideal HCP crystal structure has the value 0.74. An introduction to the
calculation of packing fractions for important crystal structures is presented later.

Several metallic rare earth elements (e.g., La, Pr, Nd, Pm, and Am) can have crystal
structures in which the stacking of the close-packed planes of atoms along the ¢ axis
is ABACABAC... . These crystal structures are known as double HCP (DHCP). In
DHCEP half the planes of atoms have the cubic stacking sequence (ABCABC. . .) while
the other half have hexagonal stacking (ABAB...). Thus elements with the DHCP
crystal structure contain both the A—A,(cub) and A—Aj;(hex) local bonding units.
The DHCP crystal structure is analogous to the hexagonal 4H-SiC crystal structure
in which the stacking of planes of atoms along the ¢ axis is also ABACABAC...,
where, in this case, A = A(Si)A(C), and so on. The local bonding units in 4H-SiC,
however, are tetrahedral Si—C4 and C-Si4 units.

Crystal Structures Based on A-Aix(cub). The crystal structure based on the
A—Ajs(cub) bonding unit is the close-packed FCC structure, also known as cubic
close-packed (ccp). In this crystal structure the central A atom and its 12 NN A atoms
all lie on adjacent points of an FCC lattice. In the FCC crystal structure every atom is
the center of an A—Aq»(cub) unit. The planes of atoms in the bonding unit are parallel
to the (111) planes of the lattice (Fig. 1.18). Choosing an FCC lattice for this crystal
structure corresponds to a basis of a single A atom at (0,0,0), while choosing a SC
lattice corresponds to a basis of four identical A atoms at (0,0,0), (0%,%), (%,0,%), and
(%, %,O). The latter choice confirms that there are four A atoms per conventional cubic
unit cell.

The stacking of the (111) planes of atoms in the FCC crystal structure is
ABCABC... since the atoms in the upper and lower planes within the A—Aj;(cub)
bonding unit are displaced from each other. Deviations from this ideal stacking
sequence can occur and are known as stacking faults (see Chapter 4).
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Figure 1.18. Cubic unit cell of the face-centered cubic (FCC) crystal structure based on the
A—Aj,(cub) bonding unit. The planes of atoms in the bonding unit are the (111) planes of the
FCC structure.

TABLE 1.5 Elemental Crystals with the FCC
Crystal Structure

Element a (nm)* Element a (nm)*

Al 0.405 Ca 0.559
Ni 0.352 Cu 0.361
Pd 0.389 Ag 0.409
Ir 0.384 Au 0.408
Pb 0.495 Yb 0.548

9L attice constants are values at room temperature.

Some elemental crystals with the FCC crystal structure are listed in Table 1.5.
Metallic bonding dominates in these crystals and the A atoms are positively
charged ions.

An important property of both hexagonal and cubic close-packed arrays of atoms
is the presence of unoccupied interstitial sites in the HCP and FCC crystal structures.
Even though close-packed arrays of atoms have the maximum possible packing fraction
of 0.74 for spheres of a given radius, the fact remains that 26% of the volume of
the crystal is in principle still available to be filled, for example, by smaller atoms.
Examples of this filling of interstitial sites are given later. These interstitial sites are
of two types, tetrahedral and octahedral, according to the symmetry of the NN close-
packed atoms surrounding the site.

The tetrahedral and octahedral interstitial sites can easily be identified within the
cubic unit cell of the FCC crystal structure (Fig. 1.19). Here the tetrahedron and octahe-
dron of close-packed atoms surrounding the corresponding interstitial sites are shown.
A tetrahedral interstitial site is located at the (%,%,%) position within the unit cell. Eight
tetrahedral interstitial sites surround each atom in the FCC crystal structure, with the
sites oriented along the set of eight (111} directions.

As shown in Fig. 1.19, an octahedral interstitial site is located at the body-centered
position of the unit cell. Identical interstitial sites are also located at the centers of
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Figure 1.19. Unoccupied interstitial sites in the FCC crystal structure: (a) example of an inter-

stitial site with tetrahedral symmetry located at the (%,i,%) position within the cubic unit cell;

(b) interstitial site with octahedral symmetry located at the body-centered position of the cubic
unit cell. Identical interstitial sites are also located at the centers of the cube edges.

the cube edges. Each atom in the FCC crystal structure is surrounded by six of these
octahedral interstitial sites, which are oriented along the six (100) directions. As a
result, there are two tetrahedral and one octahedral interstitial site per FCC atom. The
same is true for the HCP crystal structure, although the interstitial sites are arranged
differently around each atom. The occupation of these interstitial sites by cations occurs
in minerals where the close-packed array consists of O*~ anions. Crystal structures
based on A—-Aj,(icos) and A—Bj,(icos) bonding units are described in Chapter W1,
at our Web site.

Crystal Structures Based on A-Ag. The crystal structure based on the A—Ag
bonding unit is obtained by placing atoms on every point of the BCC lattice (Fig. 1.20).
This results in a BCC crystal structure in which every atom is at the center of an A—Ag
bonding unit. When a BCC lattice is chosen for this structure, the basis is simply an
A atom at (0,0,0). There are, however, two atoms per conventional cubic unit cell

Figure 1.20. Body-centered cubic (BCC) crystal structure based on the A—Ag bonding unit.
The eight NN A atoms and the six second-NN A atoms to the central A atom are shown.
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TABLE 1.6 Elemental Crystals with the BCC
Crystal Structure

Element a (nm)* Element a (nm)?

Li 0.351 Na 0.429
K 0.532 v 0.302
Cr 0.288 Fe 0.287
Rb 0.571 Nb 0.330
Mo 0.315 Cs 0.614
Ba 0.502 Ta 0.330
W 0.317 Eu 0.458

“Lattice constants are values at room temperature.

of this structure, located at (0,0,0) and (%,%,%). The packing fraction for the BCC
crystal structure is 0.68, only about 10% less than the value of 0.74 for HCP and FCC.
As shown in Fig. 1.20, there are six second-NN A atoms arranged octahedrally with
respect to the central A atom.

Some elemental crystals with the BCC crystal structure are listed in Table 1.6.
Metallic bonding dominates in these crystals and the A atoms are positively
charged ions.

Vacant interstitial sites are also present in BCC crystals (Fig. 1.21). There are six
distorted octahedral interstitial sites per cubic unit cell, in the middle of each of the six
faces (shared by two cells) and also at the midpoint of each of the 12 edges (shared
by four cells). In addition, there are six distorted tetrahedral interstitial sites per cubic
unit cell, two in each of the six faces. These octahedral and tetrahedral interstitial sites
are distorted because the distances from the site to the surrounding atoms are not all
the same. The maximum radii of hard-sphere atoms that can occupy the interstitial
sites in BCC crystal structures are smaller than the corresponding radii in FCC crystal

—
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Figure 1.21. Unoccupied interstitial sites in the BCC crystal structure: (a) interstitial site with

distorted tetrahedral symmetry; (b) interstitial site with distorted octahedral symmetry located

at the face-centered position of the cubic unit cell. Other distorted interstitial sites are located
at the centers of the cube edges.
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Figure 1.22. Cesium chloride (CsCl) crystal structure based on the A—Bg bonding unit.

structures despite the fact that FCC has a higher packing fraction than BCC. Interstitial
carbon atoms in BCC (and FCC) Fe play a crucial role in the properties of cast iron
and steels (see Chapter 12).

Crystal Structures Based on A-Bg. Crystals that are based on the A-Bg bonding
unit are typically binary compounds with a SC lattice and a basis of two atoms in the
cubic unit cell: an A atom at (0,0,0) and a B atom at (%,%,—%), or vice versa; (Fig. 1.22).
This cesium chloride (CsCl) crystal structure can be viewed as two interpenetrating
SC lattices, with A atoms on one SC lattice and B atoms on the other lattice, displaced
from the first by one-half of a body diagonal. As a result, each B atom is at the center
of a B—Ag bonding unit that has the same symmetry as that of the A—Bg unit.

The bonding in crystals with the CsCl crystal structure has a strong ionic component.
It is therefore important to recognize that, for example, if the A atom is a positively
charged ion (cation) such as Cs™, the B atom will be a negatively charged ion (anion)
such as Cl~. Examples of crystals based on the A—Bg bonding unit and having the

CsCl crystal structure are listed in Table 1.7.

Crystal Structures Based on A-Ag. When the central A atom of an A—Ag unit
is placed at a lattice point, the six NN A atoms will lie on points of a SC lattice.
The resulting crystal structure is SC, with every A atom at the center of an A—Ag
unit. The SC crystal structure has a packing fraction of only 0.52 and is therefore a
rather open structure with a vacant interstitial site with cubic symmetry located at the
body-centered position. Since this site could be occupied by other A atoms, as in BCC
crystals, or by B atoms, as in crystals with the CsCl structure, it is not surprising that
at most one element, polonium (Po), has the SC crystal structure.

TABLE 1.7 Crystals with the CsCl Crystal Structure

Compound a (nm)* Compound a (nm)“
CsCl 0.411 NH,4Cl1 0.387
CuZn (B-brass) 0.294 AINi 0.288
TIBr 0.397 BeCu 0.270

“Lattice constants are values at room temperature.
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Figure 1.23. Sodium chloride (NaCl) crystal structure based on the A—B¢ bonding unit.

Crystal Structures Based on A-Bg. When the central A atoms of A-Bg bonding
units are placed on the lattice points of an FCC lattice, with the six NN B atoms
oriented along the six (100) directions, the resulting crystal structure (Fig. 1.23) is
NaCl, or rocksalt. This crystal structure, in fact, consists of two interpenetrating FCC
lattices with A atoms on one lattice and the B atoms on the other lattice. The A and B
lattices are displaced from cach other by, for example, one half of the lattice constant
a along the [100] direction or by one half of the body diagonal in the [111] direction.
The basis for this structure consists of an A atom at (0,0,0) and a B atom at either
(%,0,0) or (%,%,%). As a result, B atoms are also at the centers of B—Ag units having
the same symmetry as the A—Bg units.

Another useful way to view the NaCl crystal structure is to recognize that the
larger C1~ anions lie on a close-packed FCC lattice containing two tetrahedral and
one octahedral interstitial site per C1~ ion, as described earlier for the FCC crystal
structure. When the smaller Na't cations are placed in all the octahedral interstitial
sites, the resulting crystal structure is electrically neutral (as required), contains both
Na+—C16_ and CI™ —Nagr bonding units, and is in fact the NaCl crystal structure. It
is apparent that this arrangement of two oppositely charged ions in the NaCl crystal
structure makes use of the efficient close-packing solution to filling space.

Table 1.8 presents examples of important crystals with the NaCl crystal structure.
Since ionic bonding dominates in these crystals, the A atoms may be considered to be
the cations and the B atoms, the anions.

Crystal Structures Based on A-A4. A—A, bonding units can be placed at the
lattice points of an FCC lattice so that every A atom is at the center of a tetrahedral

TABLE 1.8 Crystals with the NaCl Crystal Structure

Compound a (nm)* Compound a (nm)*
NaCl 0.563 LiH 0.408
AgBr 0.577 MgO 0.420
PbS 0.592 MnO 0.443
KCl 0.629 KBr 0.659

9Lattice constants are values at room temperature.
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Figure 1.24. Diamond crystal structure based on the A—A4 bonding unit.

ing A-A4 unit. The resulting crystal structure (Fig. 1.24), known as the diamond crystal
ms ' structure, consists of two interpenetrating FCC lattices of A atoms separated from
 is 3 each other by one-fourth of a body diagonal (i.e., along the [111] direction). With
CC : the choice of an FCC lattice the basis consists of two A atoms at (0,0,0) and (,7,7)
1B 1 within the cubic unit cell. There are eight A atoms per conventional cubic unit cell
ant : and the structure is quite open, with a packing fraction of only 0.34. There are a total
on. ‘ of eight interstitial sites with tetrahedral symmetry in the cubic unit cell, four on the
per : body diagonal [e.g., at (%,%,%)], three on the cube edges, and one in the body-centered
Ing j position. The stacking of the (111) planes of A atoms in the diamond crystal structure is

; AABBCCAABBCC... , which is a doubling of the FCC sequence of ABCABC... .
the ] Another view of the diamond crystal structure corresponds to an FCC lattice of A
ind » atoms with additional A atoms placed at four of the eight otherwise vacant tetrahedral
tal : interstitial sites.
tial j The four elements having the diamond crystal structure are listed in Table 1.9. The
oth ] bonding in these crystals is covalent. It should be noted that the stable form of Sn at
It room temperature is white Sn (8-Sn), which has a tetragonal structure and is metallic.
stal , Gray Sn (-Sn) is semimetallic.

‘ A hexagonal crystal structure based on the A—Ay4 unit which differs from the cubic
ire. ; diamond crystal structure in the distribution of second-NN atoms is also possible,
be and for the case of carbon is known as lonsdaleite. In this “hexagonal diamond” the

stacking sequence of planes of atoms is AABBAABB. .. , which is a doubling of the

ABAB. .. sequence for the HCP crystal structure.
the

Iral 1 Crystal Structures Based on A-B,4. A-B4 bonding units can be placed at the
: lattice points of an FCC lattice in the same way as was done for the A—A4 units

TABLE 1.9 Elemental Crystals with the Diamond Crystal

] Structure

Element a (nm)* Element a (nm)*
, o 0.3567 Si 0.543
’ Ge 0.5657 Sn (gray) 0.649

“Lattice constants are values at room temperature.
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Figure 1.25. Zincblende (sphalerite or cubic ZnS) crystal structure based on the A—B, bonding
unit.

of the diamond crystal structure. The resulting crystal structure, known as zincblende
(sphalerite) or cubic ZnS, consists of a FCC lattice of A atoms and a second FCC
lattice of B atoms displaced from each other by one-fourth of a body diagonal, along
the [111] direction (Fig. 1.25). This crystal structure possesses both A-B4 and B—-Ay
tetrahedral units. With the choice of the FCC lattice the basis consists of an A atom at
(0,0,0) and a B atom at (%,%,%), with four A and four B atoms per conventional cubic
unit cell. The stacking sequence for the (111) planes of the cubic ZnS structure is

A(Zn)A(S)B(Zn)B(S)C(Zn)C(S)A(Zn)A(S)B(Zn)B(S)YC(Zn)C(S)... ,

where alternating (111) planes consist of either Zn or S atoms. Cubic ZnS can also be
thought of as consisting of an FCC lattice of the larger S “anions” with four of the eight
otherwise vacant tetrahedral interstitial sites occupied by the smaller Zn “cations”.

Important examples of compounds that have the zincblende or cubic ZnS crystal
structure are presented in Table 1.10. Both semiconductors and insulators are repre-
sented here, with bonding that has both ionic and covalent components. Additional
examples are given in Table 11.9.

A hexagonal crystal structure based on the A—B4 bonding unit also exists and is
analogous to the hexagonal crystal structure discussed earlier for the A—Ay unit. This
structure, known as wurizite or hexagonal ZnS (Fig. 1.26), can be seen also to consist of
tetrahedral A—B, and B—A, bonding units. In the wurtzite structure the S “anions” lie
on an HCP lattice in which the Zn “cations” occupy four of the eight otherwise vacant

TABLE 1.10 Crystals with the Zincblende (Cubic ZnS) Crystal
Structure

Compound a (nm)* Compound a (nm)*

ZnS 0.541 ZnSe 0.567
B-SiC 0.435 GaAs 0.565
CdS 0.583 AlAs 0.566
InSb 0.648 AlP 0.545
BN 0.362 GaP 0.545
BP 0.454

“Lattice constants are values at room temperature.
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Figure 1.26. Wurtzite (hexagonal ZnS) crystal structure based on the A—B, bonding unit. (After
R. J. Borg and G. J. Dienes, The Physical Chemistry of Solids, copyright 1992. Reprinted by
permission of Academic Press, Inc.)

tetrahedral interstitial sites. With a hexagonal lattice, the basis of atoms for wurtzite
within the hexagonal unit cell (see Fig. 1.17) can be chosen to be A atoms at (0,0,0)
and (%,%,%), as for the HCP structure, but also with B atoms at (0,0,u) and (%,%,% + u)
where u = % when c/a = \/g . The stacking of planes of atoms perpendicular to the ¢
axis for hexagonal ZnS occurs in the sequence

A(Zn)A(S)B(Zn)B(S)A(Zn)A(S)B(Zn)B(S). .. .

Examples of binary compounds with the wurtzite crystal structure are also presented
in Table 11.9.

Crystal Structures Based on A-Ajz. When the central A atom of a planar A—A3
unit is placed at every point of a HCP lattice, the graphite crystal structure results
(Fig. 1.27). In this crystal structure every A atom is at the center of a planar A—A;

Figure 1.27. Graphite crystal structure based on the A—A; bonding unit. The hexagonal unit
cell containing four identical atoms at (0,0,0), (3,2,0), (0,0,1), and (3,1,1) is indicated. (After
R. J. Borg and G. J. Dienes, The Physical Chemistry of Solids, copyright 1992. Reprinted by

permission of Academic Press, Inc.)
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Figure 1.28. Crystal structure of hexagonal BN based on the A—B3 bonding unit. The hexagonal
unit cell containing two identical A atoms at (0,0,0) and (4,2,1y and two identical B atoms

3372
at (4,2,0) and (0,0,3) is indicated.

unit and the stacking sequence of planes of atoms along the ¢ axis is ABABAB. .. .
The lattice constants for graphite are a = 0.246 nm and ¢ = 0.671 nm. The resulting
c¢/a ratio of 2.73 is quite high and results from the positioning of one-half of the atoms
in a given layer directly above and below atoms in the adjacent layers. Choosing a
hexagonal lattice and unit cell, the basis of atoms for this structure consists of four
A atoms at (0,0,0), (3,2,0), (0.0.3), and (3,3,3). No other element has the graphite
crystal structure.

Crystal Structures Based on A-Bj. A crystal structure similar to graphite can be
formed with every A atom at the center of an planar A—Bj; unit and every B atom
at the center of a planar B—Aj; unit (Fig. 1.28). The stacking sequence of planes of
atoms along the ¢ axis is again ABABAB... . The basis of atoms corresponding to
a hexagonal lattice and unit cell consists of A atoms at (0,0,0) and (%,%,%), as for
HCP, and B atoms at (0,0,1) and (3,3,0). The stoichiometry of crystals with this
structure is therefore AB. Note that unlike atoms lie above and below each other in
this structure. A crystal with this structure is hexagonal boron nitride («-BN), which is
isoelectronic with graphite. With lattice constants ¢ = 0.2504 nm and ¢ = 0.6661 nm,
the c/a ratio for hexagonal BN is 2.66, quite close to that of graphite. Although the
crystal structure is similar in appearance to that of graphite, the relative arrangement
of atoms in adjacent planes is very different.

It is found that solids typically take on crystal structures that have the highest
packing fraction and therefore the highest density consistent with the bonding present
in the crystal. These two properties of crystals are defined and illustrated next.

1.8 Packing Fractions and Densities

Packing Fractions. The packing fraction of a crystal structure corresponds to the
fraction of space filled by its atoms. The assumptions typically made are that the atoms
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can be represented by hard spheres that are in contact with each other. The definition
used here is

(no. atoms per unit cell)(volume per atom)

king fracti PF) =
packing fraction (PF) unit cell volume

__ N(atom) V(atom).
" V(unit cell)

(1.5)

This equation can easily be generalized for crystal structures containing more than
one type of atom, as can be seen in Chapter W1. The volume V(atom) = 477%/3 for
spherical atoms of radius r.

As an example of the calculation of packing fractions, consider the simple cubic
(SC) crystal structure. With one atom per cubic unit cell, it follows that N(atom) = 1
and V(unit cell) = @>. To find the relationship between the atom radius r and the lattice
constant a, note that two atoms are in contact along the edge of the cube in the [001]
direction, as shown in Fig. W1.2a at our Web site. It follows that a = 2r, so that
V(atom) = 7a’ /6. Therefore,

(D@ /6) _ =

PF(SC) = e 5= 0.52. (1.6)

This relatively low PF for the SC crystal structure is due primarily to the presence of
a vacant cubic interstitial site at the body-centered position.

Densities. For a crystal with a single type of atom, the number density or concentra-
tion of atoms n(atom) and the mass density p are defined as

_ N(atom)
n(atom) = V(unit cell)’ (4.7
p(kg/m?) = Natomm(@tom) _ - omym(atom). (1.8)

V(unit cell)

The generalizations to crystals with more than one type of atom is obvious.

The mass densities and atomic concentrations of crystals of the elements are given
in Table 1.11. The crystalline element with the highest concentration of atoms is C
in the form of diamond with n = 1.76 x 10*° atoms/m>, a somewhat surprising result
given the low packing fraction of 0.34 for this crystal structure. Crystals of Cs have
the lowest atom concentrations, less than 1 x 10?® atoms/m®, due to the large size of
the atoms. Mass densities are found to be highest for crystals of the close-packed 5d
transition metals Os and Ir, where p is over 22,000 kg/m®. The elemental crystal with
the lowest mass density is Li, with p = 533 kg/m®.
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PROBLEMS

1.1 Using the primitive translation vectors given in Figs. 1.4 and 1.5, calculate the
volumes of the BCC and FCC primitive unit cells.

1.2 Show that the face-centered tetragonal lattice is equivalent to the body-centered
tetragonal lattice.

1.3 Show that the spacing d(hkl) between adjacent lattice planes with Miller
indices (hkl) is equal to a/+/h?+k?+ 12 for cubic Bravais lattices and to
1/+/h%/a® + k2 /b? +12/c? for orthothombic Bravais lattices.

1.4 Calculate the densities of lattice points in the (100), (110), (111), and (kkl) lattice
planes of a simple cubic lattice.

1.5 Write a computer program that will determine the distance d(n) from a given
atom to the nth nearest neighbor (NN) in a Bravais lattice. Also compute N(n),
the number of nth NNs. Carry out the calculation for the SC, BCC, and FCC
lattices.

1.6 Calculate the packing fractions for the following crystal structures: FCC, HCP,
and diamond.

1.7 Show that the B atoms in an A—Bg bonding unit come into contact with each other
when rg = 1.366r, [i.c., when ra = (v/3 — 1)rg]. Here r and rp are the radii of
the hard-sphere A and B atoms, respectively. Find the analogous conditions on the
radii for the A-Bg and A—B4 bonding units.

1.8 Prove for hard-sphere atoms in the HCP crystal structure that c¢/a = 1/8/3 =
1.633.

1.9 Assuming that the atoms in the FCC crystal structure are hard spheres of radius
R in contact with each other, calculate the maximum radii r of the smaller hard-
sphere atoms that could occupy the octahedral and tetrahedral interstitial sites in
the FCC crystal structure.

Note: An additional problem is given in Chapter W1.





